Terrain Construction for Quake 3 Engine Games
12/18/00
(Use in conjunction with Q3Radiant Manual)
Page 7 of 30
Copyright © 2000 id software, inc.

by Paul Jaquays

Terrain Construction for Quake 3 Engine Games

By Paul Jaquays

Copyright © 2000 id software, inc.

Special Thanks to Jim Dosé and Jan Paul van Waveren for their assistance and review (and making this all work in the first place).

The material here is for use in conjunction with the Q3Radiant manual for the Quake 3 Engine and presumes familiarity with that tool and game engine. Although compiling switches and shader commands are included here, this is not intended to be a general update or revision to the Q3Radiant manual

Introduction

Creating workable terrain style maps for the Q3A engine takes some reorganizing of thought, but in many ways is not substantially different from making a halls-and-rooms type of map. The designer still has to be concerned about how much can be seen at one time and give thought to map flow and play. The rules and restrictions that guide conventional map design are still there … it just occurs on a much grander scale. You still have to think about poly counts, that hasn’t changed; but generally speaking, the polies that you will use to make your game terrain are VERY large and less are likely to be seen all at once during a game.

The “terrain” style maps in Quake III: Team Arena do not represent a change to the Quake 3 Engine. The power to make them work has always been there, unrealized and untapped. What has changed is the way map files are created and processed. These construction techniques rely on changes in the Q3Radiant editor and the q3map program that processes the map files into game files.

Key changes that have been made include:

· A variant of the func_group entity has been added to the game. When a func_group of brushes (only) is give a terrain key and a numerical value (an ID number for that terrain) and several other key attributes, it becomes a terrain entity and is treated differently than other brushes during the compile.

· The map area has been expanded to 128,000 units in all extents (256,000 units on any edge of the map volume). While this does not mean that a map that large could actually run on current game hardware, it does give the designer room to explore what the actual limits may be. As a point of reference, mpterra2.bsp is roughly 12K x 16K x 3K units in size … the largest map in the game by far.

· A terrain texture mapping system plots textures across the terrain entity using a specially created .pcx or .tga art file as a map for planar projecting and blending shaders on terrain surfaces.

· A “meta-shader” is used to organize and calculate blends between the shaders that are mapped onto the terrain.

· Textures designed for use under vertex lighting can be substituted at map load time for more complex shader-manipulated textures that may not look correct in a vertex light only situation.

Art Tools Required

The creation of terrain maps requires that the mapmaker have, or have access to a computer art program. Both JASC’s Paint Shop Pro and Adobe’s Photoshop were tested and will do the job. Any art program that can output an 8-bit BMP format file with indexed color should work also.

The Terrain Entity

The process of building a piece of terrain focuses on a new thing called the “Terrain Entity.” Technically speaking, the terrain in Team Arena is nothing more than a func_group entity (brushes only) with a number of key/value pair combinations that are unique to it. These key/value pairs define it as terrain (terrain), establish the piece of art that will be used to locate textures on it the terrain (alphamap), define the group of shaders used to blend textures across its surface (shader), and tell how many different unique shaders will be used. The bsp-making utility, Q3Map compiles and textures the terrain entity based on the parameters specified in those key/value pairs.

It is possible to have multiple terrain entities in a map (see Terrain Entities below). Once you learn the method and the techniques, terrain is relatively easy to create. One warning though … easy to create does not mean easy to compile. Large maps take a much longer time to compile. And huge maps are likely to take what seems like forever. However, there are some construction, lighting, and shader options that can significantly cut down on compile time – as will be noted later.

Creating the Terrain “Mesh”

Although it’s not necessarily the only way to develop a piece of terrain, thinking of it and creating it as “mesh” of triangular brushes may be the easiest way to work initially. The terrain sections for Quake III: Team Arena were built in this manner, though each designer went about it in slightly different ways.

Our primary tool was a plugin for Q3Radiant , created by David Hyde, called GenSurf. The tool was originally created for Quake 2 (and may have been around longer) and has been adapted for use with many of the game engines using Quake, Quake2 and Quake3 technology. The basic concept behind GenSurf is that it can create and export a group of brushes (or curve patches) to Q3Radiant that have the look of “natural” terrain about them. Within the plug-in, the mapmaker has control over the horizontal dimensions of the terrain entity, the steepness of the slopes it creates, and the number of columns and rows of triangles that it subdivides into.

The terrain can be generated from within the tool by using simple waveforms, more complex mathematical expressions, fractal calculations, or height maps. The last item, height maps, is in our opinion, the route to take for creating complex, visually interesting terrain layouts. A height map is a piece of art (we rendered them in grayscale) that GenSurf uses as a template for establishing the height of vertexes (the points where the corners of the terrain triangles meet). GenSurf interprets the color of the pixel (or more correctly the numerical color value of the pixel) that corresponds to the location of the vertex. Generally, the darker the gray value, the lower in height the vertex (256 unique height values corresponding to 256 pixel colors). GenSurf then uses the vertexes to define the extents of triangles and suddenly, one has a terrain surface. Of course, there are a few details of construction between start and finish …

Height Maps

The terrain maps in Quake III: Team Arena began as grayscale bitmap art files imported into David Hyde’s “GenSurf” tool, a Q3Radiant plug-in. As mentioned before, the height map is a template that the utility uses to define the vertex heights of the triangles forming the terrain surface. We used Adobe Photoshop and JASC’s Paint Shop Pro to create and adjust our height maps … but any art program that can output a .bmp format file can be used to create the height map.

[image: image1.jpg]

 figure 1.

By way of example, the piece of artwork in figure 1 is a greatly scaled up (4X) version of the height map used to create the initial terrain geometry for mpterra2. The very dark, horizontal area near the center is the big “lake” near the center of the map. The dark curves to the upper right and lower left are the “fjord” water areas. The dark areas in the upper left and lower right are the locations of the bases. The white and very light gray areas represent the peaks of hills and mountains.

The key to understanding how the height map works is that the shades of gray in the art (call them “color values”) represent the height of mesh vertexes (triangle corners) and not the triangle quads (squares created by two triangles). When you work on a piece of art where each individual pixel corresponds to a vertex, it is easy to imagine the pixels (usually large square blocks) as squares of terrain. But that’s not how it works.

Start by giving some thought to the eventual size and proportions of the final terrain area in your map. How many rows and columns of triangles do you want in the map? The finer you subdivide the map (making more rows and columns), the more triangles will appear in any given view, but the terrain can be made less blocky by including more.

GenSurf can generate a terrain mesh of up to 64 triangles on a side (of the X and Y dimensions of the entire mesh). If you don’t decimate the GenSurf output (an option that optimizes and reduces the number of triangles used to create the mesh … and we really recommend that you don’t), it generates a mesh of triangles in arranged in quads in neat rows and columns. By way of reference, mpterra2 (the largest Team Arena map) is “only” 48x64 columns and rows of triangles. Since Q3Radiant and q3map tend to like things that end up in neat powers of 2 or units of 64 subdivisions, consider having your map extents (lower left and upper right map corners) fall onto neat units, power of 2 units. In mpterra2, the extents were set up to make the mesh triangles have sides of 256 units.

[image: image2.jpg]

Figure 2.

Figure 2 shows an example of a top view of a terrain mesh that is 8 x 8 rows and colums of triangles (on a side).

Just as you would plan out a game map, give thought to the layout and flow of your terrain map. Will it be all-open in one view? Can you use natural terrain features to block vis? How complicated will your buildings (if any) be? Do you want to include trees, water, weather effects or other items that could add to the visual cost of your map?

Begin the creation of your height map by making a new grayscale file. If your program doesn’t allow you to easily modify a .bmp format file, work in another format and then convert it when you save. You can make the dimensions of your height map art whatever you want. The extents you set in GenSurf for the map dimensions are what determine the final size of the terrain piece. Some may find it easier to work with a large file initially, using their favorite painting tools to lay in the shades of gray.

However, when you get down to making final and precise changes in your height map you should (and this is STRONGLY recommended), change the size of the art file such that the pixel dimensions of the map are 1 pixel larger than the number of divisions (rows and columns) in the terrain mesh you want to create. If you are making a 64 x 64 division map, then you want to create a 65 x 65 pixel height map.

If there is not a one-to-one match between the number of vertexes in the mesh (one more than the number of divisions) and the number of pixels in the height map, then GenSurf interpolates the number values (0 to 255 range) of the pixels to get an averaged value instead of an exact value for the height of the vertex at that point.

When you save out the height map art file, you must save it in 8-bit .BMP format. Currently, this is the only the file format that GenSurf recognizes.

Tips and things to consider for making Height Maps

· Read through the section on blocking vis later in the document. Plan your vis blocking terrain structures in advance instead of having to start over when you discover that too much of your world is in view.

· Consider what type of geometry will form the edges of your map. The terrain maps in Q3:TA resolve the issue by creating canyon-like settings … valleys bordered by high canyon or mountain walls.

· Start by filling your map with a neutral gray (value 127 or 128). Paint the high areas lighter and the low areas darker.

· Keep your terrain shapes simple when you start. You can add greater complexity as your map develops.

· You will probably want to keep the “playable” area of your map within a fairly close or “narrow” range of gray values close to the middle range of values. This allows you to use very dark shades of gray to create deep chasms and very light shades of gray to create high mountains, canyon walls or visual barriers.

· Extreme jumps between the gray values in adjacent areas means steep slopes.

· Avoid making vertical or near vertical terrain surfaces … unless you don’t mind the resulting textured surface looking like barcode. Q3Map planar projects the textures onto the terrain entity’s surface (Normal brushes are box mapped). The pixels will stretch and stretch to fill the space. The farther the surface is from horizontal, the greater the stretching.

· Use the roughness feature of GenSurf to add a little, um … roughness to your map … so flat areas aren’t completely flat. If you are using a 1 to 1 scale height map, adding “noise” to the file will also accomplish this.

· If you want an area, such as a path, to be flat, you need to make the gray value affecting two adjacent vertexes the same value.

· You can create gentle slopes by changing the gray values between adjacent areas by very small amounts.

· Slopes greater than 45 degrees are close to becoming unplayable barriers.

If you are building a symmetrical team style map, only create one side of the terrain. Create a new piece of art that has the dimensions of the final piece. Paste the map half into the new file and move it into position. If the map will have an even number of vertexes, paste the map again and then rotate or mirror (as you choose) the selection and move it into position. If the number of vertexes is odd, after you paste the first half of the map, select all but the row or column of pixels along which the two halves of the map will face and copy it. Paste it, rotate or mirror it, then position it. Now, select and copy half the row or column of pixels you didn’t copy in the last operation. Paste it, transform it as you did in the last operation, and then position it so that it is in the same row or column, but on the opposite side of the piece you copied.

When you make significant changes to a height map, consider saving it as version rather than over-writing the older file. Always nice to have a back up when you realize that you’ve messed up more than you’ve fixed.

Other Possible Height Map Tools

There are even some editors for other (non-fps) games that can be used to manipulate a surface in 3D and then output a .bmp format file. It is worth noting that we found it particularly challenging to use them … possibly more challenging than the benefits of working in 3D.

SC3K Map Editor

The first of these programs was a terrain editor for SimCity3000 called the SC3K Map Editor from Tenermerx. It is a free download available here: http://www.tenermerx.com/sc3maped/

Loathing

The other editor we tried was the “Loathing” terrain editor that comes with Bungie’s Myth II game. If you’ve a copy of Myth II, this is something you could play around with. Both of these programs could output a .bmp format file. If you’ve used it to make some Myth II maps you may have some idea of how it works already. It is my opinion that if you use an editor for either of these two games to create your height map, you may still want to or need to manipulate it in an art program. If you can visualize the relationship between shades of gray and relative heights and slopes, the art program is probably the easier way to go.

Pencils, paintbrushes and a scanner

You can also make your heightmap by painting it by traditional methods and then scanning in the file and saving it as a .bmp. Though at some point you’ll probably want to switch over to digital manipulation.

Height Map into Terrain Mesh

This is not intended to be a tutorial on using GenSurf, but it will include some pointers on getting the most out of the tool. You can download the standalone tool and find tutorials for GenSurf at this site: http://tarot.telefragged.com/gensurf/
This page, in particular, contains tips for using GenSurf, most of which to apply to Q3A terrain creation. http://tarot.telefragged.com/gensurf/appendix.htm#problems
When starting the GenSurf plug-in: You will probably want to “Select Ground Surface” as the option for making your terrain surface.

Suggested GenSurf settings (by Tab)

The General TAB:

· Select Quake 3 Arena under Game.

· Select From Bitmap under Waveform. Of course, you may want to play around with some of the other wave forms. But bitmaps give you the greatest degree of control.

· Orientation: as appropriate

· If you don’t want GenSurf to add any “noise” or randomization to the height of the mesh, set the Roughness to zero. The preview window gives you a good representation of what roughness does to your surface. The random seed changes the distribution of the noise. Adjust both fields accordingly.

The Extents TAB:

Extents: The extents of a map are the points on a map that define its lowermost t and leftmost corner and its uppermost and rightmost corner. They are given in terms of X,Y coordinates.

· Under Extents, you should chose number values that are even multiples of your number of Divisions so that the grid rectangles are all the same size (this produces better texturing results). It also makes extra work for the compiler. Furthermore, use the Extents to position the terrain entity on the map (XY only). You will want to make sure that the terrain locates exactly where you want it each time you revise it. Repositioning a terrain file can be time consuming.

· Set your X and Y divisions to equal the number of rows and columns of triangles you want. You may want to strongly consider playing with the numbers so that your triangle sides end up be large powers of two (64, 128, 256 units etc.).

· Do not check Use Bezier Patches.

· Do not Decimate (keep it set to 0%). The process that applies textures to the surfaces and blends textures between vertexes works best if the size of the triangles is consistent and constant.

The Bitmap TAB:

· Filename should point to the .bmp file you are using as a height map. Reload will bring in any changes you have made to the art file without having to restart the program.

· GenSurf assigns an integer value to each of 256 shades of gray. The value is based on the position of the color in the palette. In a grayscale palette, the values typically range from 0 (black) to 255 (white). Map Color 0 corresponds (usually) to the lowest point on the height map and Map Color 255 to the highest. If you set Map Color 0 to 0 and Map Color 255 to 2048, each increase in color value adds 8 units to the height of the vertex. When you increase the difference between to the two values, the height changes are steeper. Decrease the difference and the height changes are more global. You can control the “Z” location at which the terrain draws by adding any extra height above (or below) zero to the height values for both numbers.

The Fix Points TAB:

The general recommendation for this TAB is to leave it alone. You should either modify the height map or directly manipulate vertexes inside the Q3Radiant editor.

Texture TAB:

· Set the main texture to common/terrain. The “Steep” angle is irrelevant for terrain texture mapping.

· Make sure that the Use detail brushes setting is checked.

Once you’ve tweaked all your settings, do a Save as. If you make changes to the settings, consider saving again as a new file. It’s nice to have a back up if you screw things up.

GenSurf Tips

· Setting extents to correspond exactly with the desired map location is important. You want to be able to drop revised terrain into a map without a lot of repositioning.

Manipulating the Terrain Mesh

Once the terrain mesh has been generated, it’s very likely that you will want to fine-tune the triangles inside the editor. Do this by pulling vertexes up and down along the Z axis. Once you start fine-tuning in this manner, the height map no longer exactly represents the map.

WARNING: If you revise and convert the height map, your manipulations here are lost.

Terrain Mesh into Terrain Entity

GenSurf outputs its terrain as a func_group entity. If you create a terrain mesh by any other means, you need to group it as a func_group entity.

Make certain that all the non-visible surfaces of the func_group brushes are textured with common/caulk.

Texture the visible surfaces with common/terrain or common/terrain2.

Select the func_group and turn it to detail content (CTRL M) or use the Selection menu.

It is possible to map terrain onto something that is not a “terrain” mesh. Keep in mind that textures will be planar projected onto all surfaces in the terrain entity and that brush vertexes will be used to determine where blends start and end.

Boxing in the World

It may not need mentioning here, but … the terrain entity needs to be contained inside a sealed world. For the terrain maps in Q3:TA, we build huge boxes. Any portion of the box that could be seen while playing the game, or flying around in spectator mode was covered in sky texture. Any portion of the box that could not be seen was made out of common/caulk. If mountains or canyon walls surround your map, plan to bring the caulk portion of the wall up as high as you can. This can reduce the number of triangles seen in the map. Generally speaking, you will see ALL the sky triangles inside the map at all times.

Finally, and this is a part of vis blocking, but it should also be noted here. Don’t forget to place large caulk structures that rise up from the bottom of the world box to near the ground surfaces of terrain entity. If the ground level rises and falls substantially, these can be a part of the vis blocking process. Otherwise they serve to reduce the size of the map’s total volume (generally speaker … a good thing).

Entity Keys and Values

Once you’ve created the func_group that will become the terrain entity, you need to add the various keys and key values that make it a terrain entity.

A word to the wise: WRITE YOUR KEYS AND VALUES ON SOMETHING YOU CAN EASILY REFER TO DURING DEVELOPMENT!! During the creation, testing and tweaking of the heightmap, you will have to reenter these key/value pairs for the terrain entity every time you recreate it. One thing that can make things easier is before replacing the terrain entity with a new mesh, open the entity window and click on the most complicated of the key/value pairs (usually the alphamap). When the new terrain func_group is in place, click on the value line and hit return. That’s one less thing to retype.

Key: Alphamap

Value: The value should be the pathname to the art file use to assign textures to the terrain. Example: maps/alpha/pj_terra1.bmp. The pathname begins in the game (baseq3 or missionpack) directory, which includes the name of the art file.

The q3map compiler applies and blends the textures (shaders) on the terrain entity using a “metashader” (see Texturing the Terrain below) that references the art file named by the alphamap value. See the Creating the Alphamap section below for details.

Key: Layers

Value: A positive integer, equal to the number of unique or root textures to be blended on the map. Each color on the alphamap’s palette corresponds to a “layer.” If you plan to blend 4 textures, you need a layer value of 4.

Key: Shader

Value: A pathname, beginning in the missionpack/scripts directory, which includes the name of the filename and the name of the metashader. Example: The shader value for mpterra2 is “terrain/mpterra2”. “terrain” is the name of the script and mpterra2 is the name of the metashader used to apply texture to this terrain.

Key: Terrain

Value: Set this to 1 to indicate that the func_group is a terrain entity. It’s essentially a yes/no flag.

Key: Min

Value: Map coordinates of the minimum XY extents (lowest left extent) of a component piece of a multi-part terrain entity. This is optional, only used if you are texturing a subset of the total terrain area.

The Min and Max extents (both must be in the entity) establish where a subsection of terrain fits into the overall terrain map. It lets q3map assign a subset of the alphamap to the entity, instead of referencing the entire alphamap. It could also be used on a separate terrain entity to use the same alphamap, but reference a different shader.

Key: Max

Value: Map coordinates of the maximum XY extents (uppermost right extent) of a component piece of a multi-part terrain entity. This is optional, only used if you are texturing a subset of the total terrain area.

The Min and Max extents (both must be in the entity) establish where a subsection of terrain fits into the overall terrain map. It lets q3map assign a subset of the alphamap to the entity, instead of referencing the entire alphamap. It could also be used on a separate terrain entity to use the same alphamap, but reference a different shader.

Creating the Alphamap

The alphamap referenced by the alphamap key/value pair is an art file created specifically for the map. For non-digital artists, it may be one of the more technically and conceptually challenging things that need to be created to make the terrain map work.

Simply put, the alpha map is the template that the compiler uses to assign textures to the terrain surface.

To make the alphamap, you must have, or have access to, an art program that can save a file as an 8-bit BMP file with indexed color. I’ll discuss other file types later on, but the BMP file is probably the simplest solution, both technically and conceptually.

Terms

First, you need to understand a couple vocabulary words … jargon, if you will:

Indexed Color: In essence, each color used in a piece of art is remembered by its location on the color table or palette (see below). There are 256 colors available, numbered from 0 to 255. Each position on the palette has its own number. This number has nothing to do with the RGB values of a color in that position. If you change the actual color located at a particular location on the palette (say from red to blue), all the pixels that were formerly that shade of red (if painted using a color with that index number), will change to the new color of blue.

Color Table: This is what Photoshop calls the indexed color layout of 256 colors. In Paint Shop Pro it’s a palette. This is a pop-up window that shows the colors in the palette and their arrangement. For making an alphamap for a terrain map, the colors you choose are not important, but their position on the palette is.

Palette: This is what Paint Shop Pro calls a Color Table.

Making the Palette

The best way to start is to make a set of colors to use when painting alphamaps. If you want, you can do this once and save it out. In PSP edit the palette (in Photoshop, open the Color Table). Make sure the colors are sorted by index number (there may be a pull down menu that allows this). In PSP, the colors are indexed from the upper left (color 0 in the upper leftmost position and increasing in value to the right). In Photoshop, the positions are reversed. The color with value 0 is in the lower rightmost position and the index numbers increase to the right.

Because there is a direct one-to-one relationship between colors in the palette and individual shaders that make of the metashader, you should select clearly distinct colors to represent each shader. You should have one color for each layer you intend to include in the map (see keys above), which means one color to represent each root shader. You may find it convenient to create more, so they are available for later use (if you save the palette).

This method worked for me to make a 16-color palette in Paint Shop Pro. First, I reduced my palette size to 16 colors. I clicked on each palette position and created a color for it (don’t use black). Then, I increased my palette size back up to 256 colors, filling the rest with black. In Photoshop, it’s easier to select all the colors you don’t intend to use and make them black. Then, I save the palette out as a file for later use.

Another thing you might try is to make a grayscale palette, then use only the first few positions for your color and leave the rest for grayscale (this allows you to import bmp height maps and use them as guidelines).

Alphamap File Data

File type: The alphamap is a BMP format file or a TGA file (see other file formats below). With BMP format, each color in your palette corresponds directly to a root shader used to create the smooth texture blends on the terrain.

File size: The size of the alphamap should be one-to-one with the number of vertexes in the map. If you have 64 divisions x 32 divisions in your terrain mesh (65x33 vertexes), you should use a 65 by 33 alphamap. You can use an alphamap with a size that is not a one-to-one map with the number of map vertexes, but you can then expect a less precise interpretation of your texture assignments.

Colors linked to Shaders: If an 8-bit texture is used (BMP), q3map links a color’s position on the palette to an identifying number in the name of a shader. The color in position 0 would reference a root shader named <metashadername>_0. The color in position 1 would reference a root shader named <metashadername>_1. <metashadername> refers to the value of the Shader key (see Key: Shader below). In theory, you could probably have 256 different root shaders assigned to the terrain entity. In practice, you’d probably want to bite your arm off at the elbow before doing something as complicated as that.

Other File Formats

It is possible to use a TGA file (a RGB color format) for an alphamap. TGA files are handled differently than indexed color files like BMP. Instead of looking for a position on the palette, q3map interprets the RGB value of actual color. With a 32-bit TGA file, only the color values in the red channel are used. The program assumes that a gray scale of equal values is being used. The program divides the colors by the number of levels into equal-sized ranges. When assigning textures, q3map looks at what range the color falls in and chooses the appropriate shader to place or blend.

Controlling Texture Blends

Each triangle on the mesh can only have two root shaders blending across it. Another way to say this is that there should be only two different colors on the three vertexes that form any given triangle in the mesh. Any more, and a sharp, unblended edge appears on the terrain surface. This can take some trial and error to correct. A bsp –switch command called –showseams can help the mapmaker find these errors. Create a new bsp command in your project file that includes this option. We recommend doing it with a novis only operation.

[image: image3.jpg]

[image: image4.jpg]

 Figure 3

In figure 3, the blue and white image on the left is a scaled up (4X) version of the alphamap used on Distant Screams. It shows three different root shaders in use. Compare that to the gray scale height map on the right and you can see how the artist chose to assign textures to the various heights and depths of the map. As long as the guidelines for texture placement are followed, a mapmaker should be able to work with more different root shaders than shown here.

Alphamap Creation Tips:

· The alphamaps for the team arena maps are included with this document, both as reference and as files that you can modify to work with your own maps. You may want to compare the alphamaps against the heightmaps for the same maps, just to see how id resolved mapping issues.

· You can create a quick (though not necessarily good) alphamap by saving your height map as a new file. Then use the “posterize” filter that can be found in some art tools. Reduce the number of colors in the art to equal the layers (number of unique root shaders) in the terrain.

· If you are creating a new alphamap from scratch, use colors that are easily distinguished from each other.

· If you are making an alphamap for a team style map where both sides of the map are identical (mirrored or rotated), you only need to design the map for one side. Copy and position it as described above for the heightmap.

· The id maps used simple color schemes that were homogenous throughout the maps. That is not the only way of doing things. It would be quite reasonable to use many more terrain textures (particularly if you weren’t going to build complicated, multi-texture architecture on top of them). Consider a map where one part of the terrain used red-themed textures and the other side blue themed textures. Have them blend into a few simple neutral colors near the map center.

· Try doing terrain style texture mapping on non-terrain geometry. Results will definitely vary, but some could be interesting.

Samples: The last height map and the alphamap used to create each of the terrain maps in Team Arena is included in the Mapping Support folder. Note that the designers made vertex manipulations to the final terrain meshes that are not reflected in these height maps. Also, the alphamaps are in PCX format, not BMP format.

The Terrain Texture

In Q3:TA, there are two “terrain” textures in the common shader script. One handles all the uses of terrain where the designer does not want “dust” to rise up as the player jumps onto the terrain (common/terrain). The second (common/terrain2) has an enable_dust surface parameter. The terrain texture should be applied to all visible (in game) surfaces of the terrain entity.

Q3map looks for the word “terrain” in the name of the shader when texturing terrain entities. If a shader is used without the word "terrain" in it, and it’s not marked as nodraw, q3map will still do a planar projection, but using that texture. It will not blend between textures, however. This can be used to create hard edge texture transitions, or in cases where you want to apply textures manually, and aren’t concerned about blending.
If the terrain texture is applied to a non-terrain entity brush, the surface will not draw. The projected terrain surface textures only work on surfaces that are a part of entities with the proper terrain entity keys and values.

Their scripts for terrain are as follows:

textures/common/terrain

{

surfaceparm nodraw

surfaceparm nomarks

surfaceparm nolightmap

}

textures/common/terrain2

{

qer_editorimage textures/common/terrain.tga

surfaceparm dust

surfaceparm nodraw

surfaceparm nomarks

surfaceparm nolightmap

}

Blocking Vis

Terrain maps still have to follow the rules that apply to all Q3A engine maps. There’s only so much that you can allow to be seen at one time, or the game starts slowing down. The good news is that the engine will only draw the terrain triangles that are in the player’s PVS (potential visable set). It doesn’t have to draw all the triangles in the terrain entity just because part of the entity is in view.

At first, most of the usual bag of tricks that mappers use to create vis blocking structures in architectural maps don’t seem to apply to terrain. But that is not the case. If anything, you NEED to think of terrain in much the same way as you think of buildings. You are still dealing with open spaces that could be considered corridors and large rooms … even though they look like large valleys.

In fact, it would be best to plan out the layout of your terrain BEFORE creating your height map. If you know you want to block vis, you can design your terrain to work with vis blocking techniques and avoid the agony of having to go all the way back to the start when you discover that your killer terrain map lets you see too much at once.

If you want the player, even in spectator mode, to be able to fly everywhere and see the whole world laid out below him … an unrestricted vista, so to speak, you’re going to be much more limited. Every single triangle in the map will essentially be viewable at any moment in time. However, if you’re willing to place restrictions on your players – limit how high they can fly or climb, you suddenly have more options for blocking player visibility.

First, the terrain entity is entirely detail content, so it doesn’t block vis. That’s a key part of how this whole process works. Otherwise, vis time would be measured in eras (not minutes or hours) and visdata size would be very, very large.

To block vis in the terrain, start by creating simple vis-blocking structures out of caulk texture inside the forms of the terrain (they are not part of the terrain entity). You can try to match the silhouette of the terrain, but in the end, you may only end up complicating the visdata without gaining any real benefit.

Next, and this is going to sound strange, build thin walls of caulk that follow the divide line (where the terrain falls away on both sides) of the highest mountains, buttes or hills. Only do this where you know that you will not allow the player to move over or see over that part of the terrain (we’ll talk about clipping real soon).

Other Tips:

· Sky Texture in Place of Caulk: You sometimes want to apply the sky texture to some of the surfaces of the thin walls used as vis blockers. This can remove some HOM effects. The caulk brushes that block the vis around the bases in mpterra2 have sky texture painted on the surfaces facing the base.

· Hint Brushes: Use these extremely sparingly and only after trying to solve the problem in other ways. Hint brushes can add hours to vis compile times. Even so, they can make a difference. One trick you can try is to put a horizontal hint brush at a point about midway up the slopes of your terrain. It can add some additional vis break points.
· Adjusting Terrain: Vis times totally depend on the placement of your vis blockers. Vis times are not affected by modifying the terrain surfaces (terrain entities are detail content, remember?). With that being said, you may want to modify the terrain to allow you to more effectively position the vis-blockers.
Clipping the Terrain
The terrain entity uses its triangle surfaces as clipping planes. No additional clipping is required to allow characters to run on the terrain’s surface. As the initial terrain maps developed in house, we discovered that to control and guide play flow, we needed to clip many of our mountain and canyon slopes with vertical walls. Done right (as the slopes start becoming too steep to climb), players don’t notice (as much).

Next, decide how far up in the sky you are willing to let your player’s fly. If the map is entirely open you might want to keep it that way. If you’ve placed caulk barriers as described above, then the low point on the ridgeline (or lower) will likely be your celing height.

Clipping Tips

· Make sure your “ceiling” clip brushes extend all the way up the sky brush.

· Keep your clip brushes simple.

· Right angles are rarely found in nature. Use the clipper tool to take the corners off your vertical clips.

Mapping the Textures

The key to making this stuff look good is the q3map routine that works with alphamap and the metashader (see below) to smoothly blends textures across the terrain entity.

Texturing Overview

As noted earlier, Q3Map assigns textures, or more correctly, shader manipulated textures, to each triangle used to create the terrain map. The shaders used are part of a group of shaders called a metashader. The metashader is the family name for the shader. Individidual shaders within it are identified by a suffix, either an underline character followed by a number, or an underline character followed by a string indicating a blend between two other shaders.

Within the body of the metashader, there are two types of shaders used. The first, is the root shader. A root shader represents a terrain texture in its unblended state. The naming convention for a root shader is <metashader>_#. The second type is the blended shader. The blended shader creates a crossfade between two root shaders across the face of a single geometry triangle. The naming convention for a blended shader is <metashader>_#to#. The map maker does not need to make a blend between each root shader, but for a blend to occur, there must be a blend shader for the two root shaders.

Q3map will map a shader (root or blended) once and only once across the face of the triangle. The shaders will not tile or repeat across the triangle face.

As noted earlier, the textures are planar mapped or projected on the surface of terrain texture. The angle of any individual triangle does not affect the angle or direction at which the texture lies on the brush surface. The angle, however, does affect the apparent stretching of the texture on the surface. The steeper the angle of the brush surface, the greater will be the stretch of the shader on that surface.

Q3map looks at the pixel on the alphamap that corresponds to a given vertex. It uses the color of that pixel (or more correctly the identification number of the position that color occupies in the palette) to determine which root shader will be applied. That root shader is applied to triangles that have one vertex located at the given vertex. It then examines the alphamap color of the vertexes adjacent to the given vertex. If an adjacent vertex has the same color as the given vertex, the root shader is applied to the surface. If an adjacent vertex has a different alphamap color, the blended shader that crossfades between the two.

The Meta-shader

The shader is the group or family of related shaders used to texture a terrain entity. The shader key/value pair in the entity identifies the metashader to be used. The suffix (either “_#” for a root shader or “#to#” for a blended shader.

For each root shader that you want to blend, you need a blend shader. Note that you only need to make the blend once. If you have mpterra2_0to2, you don’t need mpterra2_2to0.

Example Terrain Shader

This was the shader used to map textures on mpterra2 (hence the metashader name)

//**

//

//
*

//
* MPTerra2 terrain shaders

//
*

//

textures/terrain/mpterra2_0

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock9b_2.tga

rgbGen vertex

tcmod scale 0.125 0.125

}

{

 map textures/skies2/clouds.tga

blendfunc filter

 detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

textures/terrain/mpterra2_1

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock12b_2.tga

rgbGen vertex

tcmod scale 0.1 0.1

}

{

 map textures/skies2/clouds.tga

blendfunc filter

detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

textures/terrain/mpterra2_2

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock10b_2.tga

tcmod scale 0.05 0.05

rgbGen vertex

}

{

 map textures/skies2/clouds.tga

blendfunc filter

detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

textures/terrain/mpterra2_0to1

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock9b_2.tga

rgbGen vertex

alphaGen vertex

tcmod scale 0.125 0.125

}

{

map textures/stone/pjrock12b_2.tga

tcmod scale 0.1 0.1

rgbGen vertex

alphaGen vertex

blendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

}

{

 map textures/skies2/clouds.tga

blendfunc filter

detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

textures/terrain/mpterra2_0to2

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock9b_2.tga

rgbGen vertex

alphaGen vertex

tcmod scale 0.125 0.125

}

{

map textures/stone/pjrock10b_2.tga

rgbGen vertex

alphaGen vertex

 tcmod scale 0.05 0.05

blendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

}

{

 map textures/skies2/clouds.tga

blendfunc filter

detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

textures/terrain/mpterra2_1to2

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock12b_2.tga

rgbGen vertex

alphaGen vertex

tcmod scale 0.1 0.1

}

{

map textures/stone/pjrock10b_2.tga

tcmod scale 0.05 0.05

rgbGen vertex

alphaGen vertex

blendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

}

{

 map textures/skies2/clouds.tga

blendfunc filter

detail

tcmod scale 0.01 0.01

 tcMod scroll -0.05 0.05

tcmod transform 1 0 1 1 1 1

}

}

Lighting the Terrain

Terrain maps also require some rethinking about the way you light maps.

Vertex Only

If you are making a large terrain map, you should plan on making your terrain textures be lit by vertex lighting only. Lightmaps can quickly become far too large for the game to handle.

Make sure your large terrain textures contain the following parameters:

Surfaceparm nolightmap //signifies vertex lighting only.

Q3map_novertexshadows //this is what keeps those caulk vis blockers from causing ugly shadows to form on your terrain.

If you are using q3map_sun in your sky …

Q3map_forcesunlight //this makes the light emitted by a q3map_sun parameter affect the vertex lit surface.

Light Sources

For outdoor maps, the obvious source of lighting ought to be the sky. The skies in the mpterra maps began with skies used in more conventional Team Arena maps, but were modified to better suit the needs of the terrain worlds.

· Slow Down Those Clouds. One thing to consider is slowing down the rate of cloud movement. What looks OK in smaller maps looks wrong in vast panoramas.

· Strong Sunlight is Good. For team maps, you want to try and keep the light relatively the same in both base areas, so if you have mountains or large base structures, having the light come in at a nearly vertical angle is good, but less dramatic.
· Ambient Light is Not So Bad. Since the beginning of Q3A map development we’ve said things like “Ambient Lighting is bad”. Well, the problems caused by ambient lighting are still there (flattening of shadows and colors), but with the distance of the play areas from the sky surface (in some maps), adding an ambient really helps bring up the overall light value in the map. Start low, maybe around an ambient value of 5 and creep upwards until the map looks right. It is VERY IMPORTANT that you give your ambient light a color. If you leave it white, you get ugly pink light instead of white. Even specifying white makes it look wrong. Best suggestion is to sample the sky texture color and translate that into an rgb formula for your ambient. One warning though … if you include “interior spaces” in your maps, the ambient light will affect those areas too. You will not get the deep dark shadows you may want in there.
· Sky Shader Trick #1: Lose the Backsplash. The attributes of the sky shader can have a significant effect on the amount of time it takes to perform a light compile on a map. You have to think of the sky as a huge area light. However, unlike light emitting textures (like your average light fixture), the sky doesn’t need to be illuminated itself. Therefore, you can eliminate the backsplash light feature which is the default status of the q3map_surfacelight parameter. Your sky shader should have the parameter q3map_backsplash with a value of –1. Removing backsplash light doesn’t affect the appearance of the sky, but does remove a significant amount of compiling overhead when the –light algorithm is used (the normal way you light things).

· Sky Shader Trick#2: Big Subdivisions. Q3Map automatically subdivides the sky into triangle quads. The more triangle quads, the more light emitting surfaces you have on your sky (if q3map_surfacelight is used). The light compile calculates for every one of these light emitting surfaces. Increase the size of the subdivision and you get less light emitters and a faster compile.

· Sky Shader Trick #3: -V-light. This is a fast lighting algorithm. It’s especially fast for calculating sky lighting. It loses a little precision, but it can greatly speed up the time it takes to light a map. Even if you decide to use a normal light operation for your final map, using –vlight for interim compiles can mean a lot less time spent waiting on the compiler to see your results.

The Light Grid

This is discussed in detail under terrain-related Worldspawn features. One of the things that can add enough memory complexity to a large terrain map, enough to make it unplayable (read crash the game), is the light grid. Think of the light grid as a map for determining how to light entities in the world. It’s what makes player models appear to move in and out of shadows as they move through the world. It’s a nice effect, but costly in memory terms. For the largest maps in Q3:TA, we “traded down” to a less detailed light grid. Increasing the size of grid subdivisions from 32 units to 256 units did this. We experimented with smaller and larger grids and settled on 256 x 256 x 256 as the best size. Smaller and the grid became large and unwieldy. Larger (especially on the z dimension) and not enough light reached some of the entities.

The details of this feature are noted below under Terrain-Related WorldSpawn Features.

Terrain-related WorldSpawn Features

A number of worldspawn key/value pairs were created to deal with issues arising out of terrain creation.

Cold Breath and Hot Dust

The following two features need not be directly related to terrain, although they first appear in the Q3:TA maps. Each key/value pair needs to be the worldspawn for that particular feature to work.

Key/value pairs:

Key: enableBreath

Value: 1

When written into the worldspawn, this enables the appearance of “frosty breath” in the air in front of players. The frosty break does not appear in a player’s first person view, but will be seen in front of other players and in 3rd person view.

Key/value pair:

Key: enableDust

Value: 1

When written into the worldspawn, this enables the appearance of dust puffs at the player’s feet when he lands on or run on a “dusty” surface. Adding the surface parameter “surfaceparm dust” to the shader for that surface creates a dusty surface. The common/terrain2 texture already contains the enableDust parameter.

Texture Remapping: Shaders for vertex light mode in Q3A

One thing we quickly discovered when mapping the metatexture onto the terrain world was that it didn’t work if a player chose to run in the game’s vertex lighting only mode. That mode compresses shaders into a single pass. Usually, the engine makes a reasonable choice for which pass is mapped, but with the metashaders, that wasn’t the case. The solution: allow the mapper to choose a substitute texture that only is used in the game’s vertex lighting mode.

For each shader that will be remapped a key/value pair must be entered in the map’s worldspawn.

Key: vertexremapshader

Value: normal_shader;vertexlighting_shader

The normal_shader is the shader normally used on the terrain. The vertexlighting_shader is the shader to be used when people run the map in Q3 in vertex lit mode. The normal_shader and the vertexlighting_shader are seperated by a semi-colon ;

As many shaders can be remapped as needed by using the key. However, if more than one shader is remapped in a map, each one must have a unique identifier … either a number or a letter after the Key word, as shown by “vertexremapshaderX”, where X is a number or any character set. Examples, vertexremapshader01, vertexremapshader02, vertexremapshaderA, vertexremapshaderB, vertexremapshadermpterra2_1, etc.

In mpterra2, the key/value pair for one of the replaced shaders looked like this:

Key: vertexremapshader1

Value: textures/terrain/mpterra2_0to1;textures/terrain/vxmpterra2

Each of the three root shaders and the two blend shaders had to replaced in this manner.

The following is a sample of the shader used to replace ALL the terrain shaders in mpterra2:

//

//
*

//
* Vertex Lighting Replacement Shaders

//
*

//

textures/terrain/vxmpterra2

{

surfaceparm nolightmap

q3map_novertexshadows

q3map_forcesunlight

{

map textures/stone/pjrock10b_2.tga

rgbGen vertex

tcmod scale 0.125 0.125

}

}
GridSize

The Light Grid Size (as noted earlier) is the map that the Q3A engine uses to light entities. It’s what gives the illusion of players moving in and out of shadowed areas on the game levels. We decided, that for large terrain maps, it should not be as detailed (and therefore nowhere near as large) as we had done for smaller, interior maps. After experimenting with placing controls for the grid size on the bsp command line, we finally settled on putting the command information in the map’s world spawn. In that way, the grid size could be easily tailored to the individual map.

Key/value pair:

Key: gridsize

Value: X Y Z

Note that the values are the dimensions of those coordinates. It’s best to keep them to power of 2 values. The default value for the gridsize (if left unchanged) is 64 64 128. Setting higher x y and z values reduces the size of the light grid data in both the .bsp file and in the Q3A game, but it also creates less accurate dynamic model lighting.

Errors

Definitely set the x y and z values higher if you get:

************ ERROR ************

MAX_MAP_LIGHTGRID

when compiling your map with q3map.

Adding Buildings to Terrain

This is really best addressed as a number of semi-related building tips:

· Plan Ahead. If you know you want buildings in your map, plan their locations from the first. Very complicated buildings (lots of geometry and surface detail) should be isolated away from long views. One reason for this is to control in view polygon counts. The second (and really obscure one) is to reduce the amount of z-compression that will affect the structures.

· Build to Support Game play. Each of the structures in the Q3:TA terrain maps was built to support a game play need. Quite often, less is better than more.

· Build Simply. Simple, uncomplicated architecture may be best. The more complicated you make your buildings, the less complicated the terrain around them can be. Depends on what you want to play up. The busy look of many Q3A maps doesn’t translate well to large terrain. Details are lost at great distances and only add to the triangle complexity of maps containing them.

· Detail Content. With few exceptions ALL the geometry inside the terrain map is detail content, not just the terrain entity. The walls forming the corridor in mpterra2 may be the only non-detail structures in that map. Making geometry into detail makes a map far easier and faster to compile. If you want to block vis inside your structures, create simple caulk structures … much the same way as described for vis blocking the terrain.

· Z-Compression Problems. Review the the map in 16 bit mode during development. This brings out z-fighting issues that occur at long distances. This z-fighting is created by detail brushes being compressed into each other (The Q3A engine does a significant amount of “z compression” as geometry becomes farther away from the viewer). This z-compression is far less apparent in 32 bit modes, but we have to remember that many people turn down graphic features in order to simply play Q3A on their systems (not just to get ridiculously high frame rates).

· Fit Structures to the Terrain. Don’t just set structures on terrain and expect them to look right. Make your buildings look like they belong where you put them. Accommodate the rise and fall of terrain in your floor plans … or “dig” into the terrain brushes to create basements, tunnels and whatever you need. You can also adjust the height map to better arrange the geometry around structures, or manually tweak the triangles once the structures are in place. History is full of examples of really interesting buildings that have been built to accommodate difficult terrain like hills, cliffs and mountains.
Adding Bots

Despite their massive size, terrain maps can support enjoyable bot play. The key is careful placement of cluster portals, which is true of any map. Study the bspc documentation for details. The documents accompanying the tools are more up to date than those in the Q3Radiant manual. Your goal should be to keep the number of areas in each cluster roughly equal and reasonably low (hundreds, not thousands).

Glossary

Root Shader: a shader that is part of a family of related shaders used to texture a terrain entity. It represents a terrain texture in its unblended state. The naming convention for a root shader is <metashadername>_#.

Blend Shader: a shader that is part of a family of related shaders used to texture a terrain entity. It represents a terrain texture in its blended state, two textures that crossfade across each other. The naming convention for a blend shader is <metashadername>_#to#.

Metashader: the identifying name of a group of related shaders used to texture a terrain entity. By way of example, the metashader name used to texture mpterra2 was … mpterra2. Its root shaders had names like mpterra2_0, mpterra2_1, and mpterra2_2. Its blend shaders were named mpterra2_0to1, mpterra2_1to2, and mpterra2_0to2.

**

New or Revised Q3map Shader Commands

**

These commands are listed here as an update to the original shader manual. A revision to the entire manual will be forthcoming that will include these options, and other clarifications and corrections.

The q3map options are a subset of the shader instructions that require recompiling of the map.

q3map_tracelight

[NEW] Surfaces using a shader with this option will always be lit with the original "-light" light algorithm. Patches will not cast shadows on this surface unless the shader option q3map_patchshadows is used.

q3map_patchshadows

[NEW] When this option is used in conjunction with the original (-light) lighting algorithm, surfaces with textures modified by this option will will show shadows cast by curve patches (under normal circumstances, curve patches do not cast shadows).

q3map_vertexshadows

[NEW] By default, no shadows are cast on vertex-only lit surfaces (see surfaceparm pointlight). Also when running Quake III Arena in vertex lighting mode, no shadows are cast upon any surfaces (shadows are part of the light map). When using this shader option shadows *will* be cast on the surface when vertex lit. However sharp shadow edges won't be seen on the surface because light values are only calculated at the vertexes.

q3map_novertexshadows

[NEW] Shaders used for misc_models and terrain can now use q3map_novertexshadows to disable shadows to be cast at the vertex lit surfaces. Shadows being cast at small misc_model objects often makes sense. However shadows on large vertex lit terrain surfaces often look bad. By default no shadows are cast at forced vertex list surfaces (shaders with "pointlight").
q3map_forcesunlight

[NEW]No sunlight is cast at vertex lit md3 models and terrain by default. Using this option sunlight (overbright bits created by q3map_sun option) will be cast on these surfaces.

q3map_vertexscale <scale>

[NEW] The light value at the vertexes of a surface using a shader with this option is multiplied by the scale value. This is a way to lighten or darken a vertex light only surface in comparison to other, light-map lit surfaces around it.

q3map_notjunc

[NEW] Surfaces modified by a shader with this option are not used for tjunction fixing.

q3map_vlight

[NEW] Surfaces modified by a shader with this option will always be lit with the "-vlight" algorithm when q3map is used with the options "-vlight -tracelight".

q3map_lightmapsamplesize <S>

[NEW] Surfaces using a shader with this shader option will use lightmaps with pixel size SxS. This option can be used to produce high resolution shadows on certain surfaces or can be used to reduce the size of lightmap data where high resolution shadows are not required.

q3map_lightimage <image>

Image to use for the light color of a surface light instead of the image(s) used by the shader. Color is averaged from the texture. Texture must be the same size as the base image map.

q3map_surfacelight <value>

Sets the amount of light this surface emits.

q3map_lightsubdivide <value>

A surface light is subdivided into a bunch of point lights for the actual lighting of the world. This parameter controls the space between those point lights. Default value is 120.

q3map_backsplash <percent> <distance>

A surface light is also lit by itself using back splash point lights with a lower intensity. The <percent> parameter specifies the intensity percentage they use from the q3map_surfacelight <value> parameter. The <distance> parameter controls the distance of these back splash lights from the surface. You can set the <percent> to zero or a negative value to disable the back splash lights.

q3map_globaltexture

When this option is set the texture is not aligned to the world.

q3map_backshader <shader>

<shader> is the path/name of the shader or texture to be used at the back side of the surface.

q3map_flare <shader>

Creates a flare using the specified <shader> at the center of the surface using a shader with this option.

light <value>

Old style flare specification always using the shader "flareshader". The <value> parameter is unused.

q3map_sun <red> <green> <blue> <intensity> <degrees> <elevation>

Color will be normalized, so it doesn't matter what range you use. The intensity falls off with angle but not distance. A value of 100 is a fairly bright sun.

degree of 0 = from the east, 90 = north, etc.

elevation of 0 = sunrise/set, 90 = noon

surfaceparm pointlight

Surfaces using a shader with this parameter will always be vertex lit

This option can be used to reduce the lightmap data. Often used on surfaces

that don't need any shadows.

Surfaceparm dust

If a player lands (jumps onto) on a surfaces using a shader with this parameter, a put of dust will appear at the player’s feet. Note that the worldspawn entity of that map must have an enableDust key set to a value of 1.

